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ABSTRACT 

This manuscript discusses some recent advances in multi-target tracking.  First, we describe a target 
kinematic motion model that has a number of appealing characteristics and that, to our knowledge, is not 
in use within the data fusion community.  We describe recent advances in multiple-hypothesis tracking, 
both in the traditional setting where measurements are informative with respect to target state, and in the 
limiting case of cardinality-only information.  We touch upon recent work in fusion performance 
modelling and propose a generalization to the recently-introduced MOSPA metric.  

1 INTRODUCTION 

Effective multi-sensor surveillance requires a high-performance data-fusion capability.  Within the class of 
contact-based, scan-based fusion methodologies (those amenable to network-centric real-time surveillance 
requirements), track-oriented multiple-hypothesis tracking (MHT) is widely acknowledged as the most 
powerful currently known methodology.  It performs better than soft-data association approaches (such as 
PDA and JPDA), it allows for target maneuvers (unlike conventional ML-based techniques), it has mature 
track-initiation (unlike most PMHT implementations), and it provides explicit track-label information 
(unlike SJPDA, PHD, and CPHD).  Like all automatic-tracking paradigms, it is suboptimal: in the case of 
MHT, the sub-optimality stems from the need to manage hypothesis growth and to reduce hypotheses 
through track pruning or merging techniques.  Despite advances in techniques for hypothesis management, 
complexity remains the key challenge to effective MHT in large-scale scenarios. 
Some MHT researchers have proposed advanced hypothesis-management techniques to contend with 
hypothesis tree explosion.  This is generally attempted either locally (based on track-hypothesis scores) or 
globally (through so-called k-best global approaches).  These and related techniques seek to maintain 
hypothesis richness with as small a set of track hypotheses as possible.  Unfortunately, these techniques 
have been found to provide only modest performance improvements.  For instance, with k-best global 
techniques, it is found that the top-scoring global hypotheses are quite similar, so that k must be quite large 
to provide sufficient richness.  Further, managing global hypotheses is an extremely expensive approach to 
MHT, indeed it is what motivated development of the track-oriented MHT approach by Kurien and others 
in the 1980s [1].  Recently, some group tracking ideas have been exploited to address in part the 
hypothesis explosion in MHT [2]. 
Single-stage (centralized) MHT is challenged due to its inability to maintain a rich enough set of track 
hypotheses over long time intervals.  Loosely stated, there is an inability “to see the forest behind the 
hypothesis trees”.  In our ongoing research, we have discovered that hierarchical fusion provides a 
powerful methodology for advanced hypothesis management.  We have applied multi-stage MHT to 
address a number of challenges in ground, undersea, and maritime surveillance [3-5], as well as to address 
fundamental limitations in tracking performance [6]. 
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In this manuscript, we explore some further research directions in multiple-target tracking.  Some of the 
contributions discussed here are described at greater length in a number of recent publications.  The reader 
is referred to these papers for further details on each topic.   

This manuscript is organized as follows.  In Section 2, we discuss the Mixed Ornstein-Uhlenbeck process 
[7].  In Section 3, we present a simple tracker performance model that is useful to study the impact of the 
quality and number of sensors on fusion processing.  In Section 4, we discuss a modified MHT approach 
that is effective at suppressing the damaging impact of spurious tracks on target-originated ones [8].  In 
Section 5, we discuss the target cardinality problem, a limiting form of the general multi-target tracking 
problem applicable to large-scale surveillance challenges [9].  Section 6 proposes a generalization to the 
Mean Optimal Subpattern Assignment (MOSPA) metric that was first proposed in [10].  Conclusions are 
in Section 7. 

2 THE MIXED ORNSTEIN-UHLENBECK PROCESS 

Kinematic modeling is an important aspect of tracking system design.  Significant attention has been 
given to this topic; the reader is referred to [11-14] and the references therein, as well as the more recent 
literature, much of which is documented in [15].  While nearly constant velocity (NCV) motion modeling 
is often adequate, much attention has been devoted in recent years to more complex, multiple-model 
approaches.  Here, we are concerned with the lack of stationary inherent in the NCV-based models, 
including unbounded position and velocity under long-term prediction. 
 
We introduce the Mixed Ornstein-Uhlenbeck (MOU) process.  This model is a generalization of a number 
of existing models, each with its strengths and limitations: 
 

• The NCV has a well defined velocity, but both velocity and position grow unbounded over time; 
• The Ornstein-Uhlenbeck process [14] has bounded position, but no velocity is defined; 
• The Integrated Ornstein-Uhlenbeck process [14] has a well defined, bounded velocity, but the 

position grows unbounded over time. 
 
The MOU process exhibits a well defined velocity and bounded velocity and position over time.  As such, 
it lends itself to steady-state analysis.  The initial target state can be defined in a natural way based on the 
steady-state characteristics of the MOU process, leading to a stationary stochastic process.  Interestingly, 
there are constraints on the allowable steady-state position and velocity; further, there are two choices for 
the process drift terms leading to identical position and velocity dynamics. 

2.1 The basic form 
We introduce the following Mixed Ornstein-Uhlenbeck (MOU) process that includes drift terms in both 
position and velocity components.  For simplicity, we consider the one-dimensional case.  (The extension 
to multiple dimensions with uncorrelated process noises is immediate.)  The process noise is a zero-mean 
white Gaussian process. 
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It can be shown (via Taylor expansions of the exponential terms) that in the limit 0, 21 →γγ  we revert to 
the standard nearly constant velocity (NCV) motion model.  Similarly, in the limit  the model 
converges to the NCV form.  The MOU model is characterized by bounded uncertainties in position and 
velocity: 

0→Δ kt
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( )QNXt kk ,0~1+⇒∞→Δ .         (2.9) 

2.2 The canonical form 
We wish to express the MOU process in canonical form, with the following state variables: 
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Accordingly, the state transition matrices and noise covariance matrix are now given by the following: 
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The steady-state form is now given by (2.20-2.21).  
( )QNYt kk ,0~1+⇒∞→Δ ,         (2.20) 
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The continuous-time state transition matrix consistent with this change of variables is the following: 

( ) .
10~

2121

1
⎥
⎦

⎤
⎢
⎣

⎡
+−−

=Τ= −

γγγγ
FTFk

        
(2.22) 

This leads to the so-called controller canonical form [16], where the drift terms are given by: 
 

211ˆ γγγ = ,           (2.23) 
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We can express the steady-state covariance matrix in terms of these variables. 
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The solution to (2.23-2.24) is given by the following. 
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Given requirements for steady-state position and velocity standard deviations  pσ  and vσ , the drift terms 
are to be fixed as follows. 
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From (2.26), the condition for non-oscillatory behavior is given by the following. 
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2.3 Multiple targets 
In the multi-target setting, we consider a continuous-time Poisson birth process with mean bλ  and death 
rate χλ .  Birth and death processes can be discretized as follows.   
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In the limit of large revisit time, the number of births converges to the steady-state distribution on the 
number of targets: 
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In the limit of small death rate, the number of births is a direct accumulation of births over the time 
interval: 

kbkb tΔ→⇒→ + λλλχ 1,0 .           (2.32) 

Multi-target stationarity is insured by setting the birth rate in the first scan according to the Poisson 
distribution with steady-state parameter bλ .  Additionally, the initial target state for every birth (for 
all scans) is chosen according to the steady-state distribution ( )Q,0N . 

2.4 Discussion 
The MOU process in basic form and in canonical form is illustrated in Figures 2.1-2.2.  It is 
interesting to note from that the steady-state position and velocity are uncorrelated.  Also, it is 
interesting to observe that there is a pair of solutions to (2.26) leading to the same drift terms in 
controller canonical form, given by (2.23-2.24).   

∫+ +∫
x2 x1w

2γ− 1γ−  

Figure 2.1: The MOU process. 

∫+ ∫
x2 x1w

1̂γ−

2γ̂−

 

Figure 2.1: The MOU process in controller canonical form. 

In figures 2.3-2.4, we illustrate some realizations of the MOU process. 
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Figure 2.3: A 2D stationary MOU process realization of 1000 scans; only the positional state is plotted. 
Note the higher target density near the positional origin. For this example, the mean number of targets 

at any time is 10. 
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Figure 2.4: Another realization, initialized with one target and birth and death rates set to zero. 
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In summary, the MOU process exhibits a well defined velocity and bounded velocity and position over 
time.  The model lends itself to steady-state analysis.  The initial target state can be defined in a natural 
way based on the steady-state characteristics of the MOU process, leading to a stationary stochastic 
process.  Interestingly, there are constraints on the allowable steady-state position and velocity; further, 
there are two choices for the process drift terms leading to identical position and velocity dynamics. 
The characteristics of the MOU process make it a good candidate for long-duration target simulations in 
which the density of targets and their kinematic characteristics remain stationary and well-behaved.  The 
model can be applied directly in recursive filtering as well, by using the state transition matrix and process 
noise covariance matrix derived here in Kalman filtering or its nonlinear and multiple-model extensions. 

Multi-target stationary MOU processes are obtained by setting the initial distribution on number of 
targets according to steady-state statistics.  Similarly, the initial state for all target births is to be set 
according to the steady-state state covariance. 

3 TRACKER MODELING 

It is useful to adopt a simple model that captures salient features of fusion processing.  Our model relies on 
the following parameters: 

• Target signal-to-noise ratio ( s ); 
• Number of sensors ( ); S
• Number of sensor resolution cells ( C ); 
• Sensor detection threshold (τ ); 
• Sensor revisit time [sec] ( ); sT
• Track confirmation time [sec] ( ); cT
• Track termination time [sec] ( ); kT
 

The sensor detection characteristics are given by (3.1-3.2). 
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The track detection characteristics are given by (3.3-3.4), where M is the number of contacts required for 
track confirmation. 
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An illustration of this fusion model is in Figure 3.1, where the track confirmation threshold M is varied, 
and each curve corresponds to a different surveillance network size. 
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Figure 3.1: Model-based fusion performance. 

More discussion of fusion performance modelling is in [12, 17-18] and references therein. 

4 MODIFIED MHT FOR IMPROVED PERFORMANCE 

A key challenge in multi-sensor multi-target tracking is measurement origin uncertainty.  That is, unlike a 
classical nonlinear filtering problem, we do not know how may objects are in the surveillance region, and 
which measurements are to be associated.  New objects may be born in any given scan, and existing 
objects may die. 

We assume that for each sensor scan, contact-level (or detection-level) data is available, in the sense that 
signal processing techniques are applied to raw sensor data yielding contacts for which the detection and 
localization statistics are known.  We are interested in a scan-based (or real-time) approach that, perhaps 
with some delay, yields an estimate of the number of objects and corresponding object state estimates at 
any time. 

Several approaches to contact-level scan-based tracking exist.  In this section, we employ a hybrid-state 
formalism to describe the track-oriented multiple-hypothesis tracking approach.  Our approach follows 
closely the one introduced in [1].  We assume Poisson distributed births at each scan with mean bλ , 
Poisson distributed false returns with mean faλ , object detection probability , object death or 
termination probability  at each scan.  (We neglect the time-dependent nature of birth and death 
probabilities as would ensue from an underlying continuous-time formulation, and we neglect as well 
inter-scan birth and death events.) 

dp

χp
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We have a sequence of sets of contacts ( )k
k ZZZ ,...,1= , and we wish to estimate the state history kX  for 

all objects present in the surveillance region.  kX  is compact notation that represents the state trajectories 
of targets that exist over the time sequence ( )ktt ,...,1 .  Note that each target may exist for a subset of these 
times, with a single birth and a single death occurrence i.e. targets do not reappear.  We introduce the 
auxiliary discrete state history  that represents a full interpretation of all contact data: which contacts 
are false, how the object-originated ones are to be associated, and when objects are born and die.  There 
are two fundamental assumptions of note.  The first is that there are no target births in the absence of a 
corresponding detection, i.e. we do not reason over new, undetected objects.  The second is that there is at 
most one contact per object per scan.   

kq

 We are interested in the probability distribution ( )kk ZXp |  for object state histories given data.  This 
quantity can be obtained by conditioning over all possible auxiliary states histories . kq
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A pure MMSE approach would yield the following: 
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The track-oriented MHT approach is a mixed MMSE/MAP one, whereby we identify the MAP estimate 
for the auxiliary state history , and identify the corresponding MMSE estimate for the object state 
history 
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Each feasible  corresponds to a global hypothesis.  (The set of global hypotheses is generally 
constrained via measurement gating and hypothesis generation logic.)  We are interested in a recursive 
and computationally efficient expression for 

kq

( )kk Zqp |  that lends itself to functional optimization without 
the need for explicit enumeration of global hypotheses.  We do so through repeated use of Bayes’ rule.  
Note that, for notational simplicity, we use ( )⋅p

k

 for both probability density and probability mass 
functions.  Also, the normalizing constant c  does not impact MAP estimation.  
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Recall that we assume that in each scan the number of target births is Poisson distributed with mean bλ , 
the number of false returns is Poisson distributed with mean faλ , targets die with probability , and 

target are detected with probability .  The recursive expression (5) involves two factors that we 
consider in turn, with the discrete state probability one first.  It will be useful to introduce the aggregate 
variable 

χp

dp

kψ  that accounts for the number of detections  for the d τ  existing  tracks, the number of track 
deaths χ , the number of new tracks , and the number of false returns b bdr −− , where r  is the number 
of contacts in the current scan. 
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Substituting (4.8-4.9) into (4.7) and simplifying yields the following. 
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The first factor in (4.5) is given below, where { }rjzZ jk ≤≤= 1, , rJJJ fabd =++ , and the factors on 

the R.H.S. are derived from filter innovations, filter initiations, and the false contact distribution (generally 
uniform over measurement space).  For example, in the linear Gaussian case, ( )kk

jd qZzf ,| 1−  is a 
Gaussian residual, i.e. it is the probability of observing  given a sequence of preceding measurements.   

If there is no prior information on the target, 
jz

( )kk
jb qZzf ,| 1−  is generally the value of the uniform density 

function over measurement space.  Similarly, ( )kk
jfa qZzf ,| 1−  is as well usually taken to be the value of 

the uniform density function over measurement space, under the assumption of uniformly distributed false 
returns.  Note that the expressions given here are general and allow for quite general target and sensor 
models. 
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Substituting (4.10-4.11) into (4.5) and simplifying results in (4.12-4.13).  This expression is the key 
enabler of track-oriented MHT.  In particular, it provides a recursive expression for ( )kk Zqp |  that 
consists of a number of factors that relate to its constituent local track hypotheses. 
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An implicit reduction in the set of hypotheses in (12-13) is that target births are assumed to occur only in 
the presence of a detection (i.e. there is no reasoning over un-detected births). Correspondingly, the factor 

 reduces the effective birth rate to dp bdp λ .  Further, in the first scan of data, it would be appropriate to 
replace bdp λ  by  χλ pp bd /  to account properly for the steady-state expected number of targets. (More 
generally, target birth and death parameters should reflect sensor scan rates, as the underlying target 
process is defined in continuous time.)  Further reduction in the set of hypotheses is generally achieved via 
measurement gating procedures.  Finally, for a given track hypothesis, one usually applies rule-based 
spawning of a missed detection or termination hypothesis, but not both (e.g. only spawn a missed 
detection hypothesis until a sufficiently-long sequence of missed detection is reached). 
One cannot consider too large a set of scans before pruning or merging local (or track) hypotheses in some 
fashion.  A popular mechanism to control these hypotheses is n-scan pruning.  This amounts to solving 
(4.4), generally by a relaxation approach to an integer programming problem, followed by pruning of all 
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local hypotheses that differ from  in the first scan.  This methodology is applied after each new scan of 
data is received, resulting in a fixed-delay solution to the tracking problem. 

kq̂

Often, n-scan pruning is referred to as a maximum likelihood (ML) approach to hypothesis management.  
ML estimation is closely related to maximum a posteriori (MAP) estimation.  In particular, we have: 

( ) ( ) ( ).|maxargˆ XfXyfyX MAP =       (4.14) 
( ) ( ).|maxargˆ XyfyX ML =       (4.15) 

Note that ML estimation is a non-Bayesian approach as it does not rely on a prior distribution on X .  ML 
estimation can be interpreted as MAP estimation with a uniform prior.  In the track-oriented MHT setting, 
n-scan pruning relies on a single parent global hypothesis, thus the ML and MAP interpretations are both 
valid. 

Once hypotheses are resolved, in principle one has a state of object histories given by ( )kZX̂ .  In practice, 
it is common to apply track confirmation and termination logic to all object histories.  A justification for 
this is that it provides a mechanism to remove spurious tracks induced by the sub-optimality inherent in 
practical MHT implementations that include limited hypothesis generation and hypothesis pruning or 
merging.  Further, batch track extraction would incur significant processing delay. 

Given the need for post-association track confirmation and termination logic, a reasonable simplification 
is to employ equality constraints in the data-association process, which amounts to accounting for all 
contact data in the resolved tracks.  Spurious tracks are subsequently removed in the track-extraction 
stage. 

In scan-based processing, assume that a track hypothesis is confirmed when it achieves an M-of-N 
criterion, with the start of the (tentative) track defined with the first of the relevant M measurements, and 
that tentative tracks that have no chance to achieve the M-of-N criterion are discarded.  Also, a track 
hypothesis is terminated if K missed detections are exceeded.  Note that, under multiple-hypothesis 
processing, a confirmed track may be pruned under a hypothesis-reduction scheme such as n-scan pruning.  
Following hypothesis resolution, a single global hypothesis exists that is composed of a number of 
resolved tracks.  Next, the set of resolved tracks undergoes a track extraction process based on the same 
M, N, and K parameters.  

With these notions of confirmed, resolved and extracted tracks, we now introduce a modification to (4.12) 
that will prove useful.  In particular, a confirmation reward factor 1≥ξ  is applied to track updates for 
confirmed track hypotheses  only. cJ
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   (4.16) 

This mechanism introduces a means to give precedence to confirmed tracks in the data association 
process.  The scheme is shown to provide improved tracking performance results, as described in [8].  
Some theoretical justification for its use comes from considering a limiting form of the problem [8]. 
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5 CARDINALITY TRACKING 

5.1 The unique-hypothesis approach 
In the case of cardinality-only information, the key recursive track-oriented MHT equation is the 
following: 

( ) ( ) ( ) ( )
k
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b
b
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d
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c
Zqppppp

Zqp
11 |11

|
−−

+
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=

−

λ

λχτ
χ

χ
χ

χτ

,     (5.1) 

where for all scans bλ  is the mean for Poisson-distributed births,  faλ  is the mean for Poisson-distributed 

false returns,   is the object detection probability,   is the object termination probability, 
 is the discrete state that accounts for target births and terminations as well as all data 

associations, and 

d

)
p χp

( k
k qqq ,...,1=

k
kq

c  is a factor that is independent of . In the standard track-oriented MHT formulation, 
we seek the likeliest  given measurement data, and then condition on  to estimate target trajectories. 

kq
kq

( ) ( )kkk
MAP

k ZqpZqq |maxargˆ == ,        (5.2) 
( ) ( )kk

MMSE
k qZXZX ˆ,ˆˆ = .         (5.3) 

In cardinality tracking, each target trajectory is characterized by a track initiation time and a track 
termination time. 

The use of (5.1) for cardinality tracking is problematic.  A first difficulty is a computational one: since all 
measurements gate with all tracks, there is a large number of track hypotheses. 

A partial reduction in the complexity of the optimization problem (5.1) can be achieved by recognizing 
that measurements are interchangeable.  Assume we have N resolved tracks, n-scan delayed hypothesis 
resolution, and a sequence of sets of measurements of cardinality { }11 ,..., +−scannZZ .  We recast the 
hypothesis generation logic such that a single measurement exists in each scan, but it must be used 
multiple times.  Accordingly, hypothesis branching is more limited than in standard MHT, though no 
measurement gating is applied. It is easy to see that the number of track hypotheses  at level i is 
bounded by the following, with the inequality due to track termination of some branches (inability to reach 
track confirmation or repeated missed detections).  Note that 

in

Nn =0 . 

 
.1,...1,2 1 +−=+≤ − scanniZnn iii

        
(5.4) 

 
The solution to eqn. (5.4) is given by: 

 .1,...1,22
1

+−=+≤ ∑
=

− scanniZNn
i

j
j

jii
i

       
(5.5) 

 
Having generated track hypotheses characterized by a vector of track scores c, we have the 
following optimization problem with 

1+−scannn

1+−scannξ =N+n-scan+1 constraints. 
 

,xcJ ′=
            

(5.6) 
,bAx =
            

(5.7) 
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where the matrix A  is a 1+−scannξ -by-  matrix with structure defined by the form of the set of track 
hypothesis trees, x is a vector of ones and zeros, and the vector b is given by N ones (resolved track 
constraints) and n-scan+1 entries given by 

1+−scannn

{ }11 ,..., +−scannZZ  (measurement constraints).  We seek to 
minimize (5.6) while satisfying (5.7). 
The reduced-complexity optimization problem formulation does not address a more serious concern with 
cardinality tracking: a large number of comparably-scoring global hypotheses in large-scale surveillance 
applications, leading to the null solution as the optimal choice under (5.2).  Indeed, for large surveillance 
problems, the posterior probability ( )kk Zqp |

 

will be very small for all non-trivial choice of    (i.e. for 
all but the null solution). 

kq

Further, unlike conventional tracking, measurements are much less informative and we lack kinematic 
filter residuals that lead to relatively large hypothesis scores for some association decisions and relatively 
small scores for others.  This leads to a need for a small sensor revisit time, further exacerbating these 
difficulties. 

The difficulties associated with identifying a single global hypothesis point to the fundamental limitation 
in tracking solutions (like MHT) that do not provide the rich solution that optimal Bayesian tracking 
would provide: the full posterior probability distribution ( )kk Zqp | .  Nonetheless, it would be beneficial 
to indentify a set of global hypotheses that are indistinguishable (due to measurement equivalence) and 
that provide significant probability mass.  This motivates the development in the next section. 

5.2 The hypothesis-class approach 

We wish to identify a most probably set of discrete states { }kq , where all member of the set are equivalent 
under measurement re-ordering.  To do so, we must revisit the derivation of track-oriented MHT equations 
and introduce suitable modifications. 

We are interested in a recursive and computationally efficient expression for { }( )kk Zqp |

( )⋅p

 that lends itself 
to functional optimization without the need for explicit enumeration of global hypotheses.  We do so 
through repeated use of Bayes’ rule.  Note that, for notational simplicity, we use  for both probability 
density and probability mass functions.   
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The recursive expression (5.8) involves two factors that we consider in turn, with the discrete state 
probability one first.  It will be useful to introduce the aggregate variable kψ  that accounts for the number 
of detections  for the d τ  existing  tracks, the number of track deaths χ , the number of new tracks , and 
the number of false returns , where 

b
bd −−r r  is the number of contacts in the current scan. 
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The key difference with respect to standard track-oriented MHT is in (5.12), since we must not account for 
differences in which measurements are taken to be track updates, which are taken to be track births, and 
how measurements are assigned to tracks.  Substituting (5.11-5.12) into (5.10) and simplifying yields the 
following. 
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Substituting (5.8) into (5.13) and with further simplification due to the lack of filter residual terms leads to 
(5.14). 
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Note that the multiplicative weights in (5.14) that are not present in (5.1) obviate in a natural way the need 
for the modified MHT formalism that addresses the greedy-target problem in the general tracking setting.  
Cardinality tracking expressed via equivalence classes leads both to computational efficiency (there are 
much fewer equivalence classes over global hypothesis than there are global hypotheses) and to a well-
posed formulation whereby the MAP equivalence class is of interest.  Further, the weights in (14) imply 
structural results regarding the form of the optimal equivalence class and optimal track-extraction rules 
[9].  Accordingly, optimal track extraction is straightforward. 

6 GENERALIZED MOSPA 

We propose here a generalization to the Mean Optimal Subpattern Assignment (MOSPA) metric that was 
first proposed in [10]. An existing generalization that partly addresses track continuity is given in [19]. 
However, that generalization is inadequate as it utilizes a problematic global mapping of tracks to truth. 
Further, in general one may wish to penalize missed detections and false alarms differently and more 
heavily than the cutoff distance in the MOSPA metric. Finally, it is useful to allow different norms in 
defining the distance metric and the corresponding OSPA metric need. The Generalized MOSPA (G-
MOSPA) introduced here addresses these concerns. Further, the G-MOSPA metric can be used to define 
fusion gain in perhaps a more meaningful way than attempted in [20]. 

6.1 The MOSPA metric 
For two sets X

 
and  with cardinalities Y nm ≤  and with Π  the set of all possible associations among the 

sets, the OSPA metric is given by (6.1), where the cutoff distance is given by (6.2) which in turn relies on 
the Euclidean metric over NR  (6.3):   
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The MOSPA metric is the mean OSPA metric over a sequence of pairs of sets.  

6.2 The first generalization: multiple norms 
Replace (6.1-6.3) by (6.4-6.6). This simply allows greater flexibility in the choice of Euclidean norm. For 
example, we expect that an operationally-useful choice will be q=2 (i.e. the usual Mahalanobis distance) 
and p=1.  Indeed for m=n, this results simply in the mean Mahalanobis distance over all targets. 
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This still appears to be a metric in the mathematical sense. 

6.3 The second generalization: more flexible costs 

Replace (6.3-6.4) by (6.7). This considers a vector c of thresholds. Accordingly, it decouples the threshold 
 that specifies how close a track estimate must be to the true target location to be considered a valid 

detection; the thresholds  that prescribes a cost (in meters) to a missed detection; and the threshold  
that prescribes a cost (in meters) to a false alarm.  Note that in many applications (think of ballistic missile 
defense) a missed detection is more costly than a false alarm.   

1c

2c 3c

( ) ( )( ) ( )( ) ( )( )
( ) pcm

i

ppp
iiqqcp ccmnccmmyxd

n
YXD

/1

1
310210,,

10

,min1,
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−+⋅−+= ∑

=
Π∈ ππ

.  (6.7) 

Note that ( )10 cm  is the number of associations that do not exceed the distance threshold ; further, for 
notational simplicity we assume these associations involve the first  true target locations.   

1c
0m

Note that the metric given by (6.6-6.7) is not a metric in the mathematical sense (symmetry is violated). 
6.4 The third generalization: accounting for track-labelling performance 
First, the optimal assignment of tracks to truth ( )iπ̂

 
is performed for each pair of sets of points in the 

sequence. The optimal assignment is done with respect to (6.7). Subsequently, we assign a (global) label 
to each track, corresponding to the mode association, i.e. the target with which it is associated the most.  
This allows us to consider the following labeled-set distance, where 0≥α  is the weight given to track-
truth mislabeling and [ ]⋅⋅,δ  is the Kronecker delta function. 
 

( ) [ ]( )αδ tstsdl ,1, −= .          (6.8) 
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Accordingly, (6.7) is now replace by (6.9). 
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While the expression (6.9) accounts for mislabeling costs, it does not account for labeling-diversity costs.  
That is, for a tracker to perform well with respect to (6.9), there is no incentive not to assign each track 
estimate a unique label.  Accordingly, we must introduce a penalty term for labeling diversity that is 
analogous to parametric penalization as done in information theoretic settings e.g. the Akaike Information 
Criterion [21]. 

The G-MOSPA metric is evaluated over two sequences of sets { }NXXX ,...,,1=
 
and { }NYYY ,...,,1=

0
 

according to (5.3), where  is the number of distinct track labels in Y  and where L ≥β  is the weight 
given to label diversity. 
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This third generalization of the MOSPA metric shares some similarities with the approach taken in [19].  
However, the key difference is the methodology to perform the global mapping to tracks to truth.  We 
believe the approach taken in [19] is problematic; for example, it does not scale to lengthy scenarios where 
most targets will have multiple tracks associated with them over the course of the scenario. 

6.5 Discussion 
While G-MOSPA is not a metric in the mathematical sense, it is still useful as a scalar metric that 
quantifies overall tracking performance.  Further, it allows for more flexible and operationally-relevant 
choices for the Euclidean norm and penalties for missed detections and false alarms, and reflects track-
labelling performance without resorting to a problematic global mapping of tracks to truth.  The ratio of 
input and output G-MOSPA can be interpreted as fusion gain. 

Use of G-MOSPA provides an interesting unifying perspective on unlabeled and labelled tracking. The 
former seeks to perform well with respect to the G-MOSPA metric without considering labels i.e. with 

0== βα , while the latter adopts 0, ≥βα .  Naturally, an optimal labelled tracker will not perform as 
well as an optimal unlabeled one when compared with respect to G-MOSPA with 0== βα . 

It will be of interest to apply G-MOSPA and fusion gain computations to benchmark datasets to examine 
their properties. In particular, it will be of interest to see whether these quantities have desirable 
properties: small changes in fusion gain for scenarios of comparable complexity and for a given tracking 
solution (allowing for sensor management based of detection-level G-MOSPA); increased fusion gain for 
more sophisticated tracking solutions and a given scenario complexity; lower fusion gain for more 
complex scenarios and a given tracking solution. 

7 CONCLUSIONS 

Data fusion is an essential component of surveillance technology for security, defense, and other domains.  
In this manuscript, we discuss a number of recent research efforts.  Our ongoing research is principally 
focused on extending the state-of-the-art in track-oriented multiple-hypothesis tracking by exploring a 
hierarchical processing paradigm that allows for efficient analysis of competing hypotheses in large-scale, 
high-clutter, dense-target surveillance settings.   
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